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a b s t r a c t 

The brain-computer interface (BCI) has become one of the most important biomedical research fields 

and has many useful applications. An important component of BCI, electroencephalography (EEG) is in 

general sensitive to noise and rich in all kinds of information from our brain. In this paper, we study 

the feature fusion problem in electroencephalography (EEG). We introduce (1) a discriminative feature 

extractor which can classify multi-labels from short-term EEG signals, and (2) a new strategy to filter out 

unwanted features from EEG signals based on our feature extractor. Filtering out signals relating to one 

property of the EEG signal while retaining another is similar to the way we can listen to just one voice 

during a party, which is known as the cocktail party problem in the machine learning area. Built based on 

the success of short-term EEG discriminative model, the feature filter is an end-to-end framework which 

is trained to map EEG signals with unwanted features directly to EEG signals without those features. 

Our experimental results on an alcoholism dataset show that our novel model can filter out over 90% of 

alcoholism information on average from EEG signals, with an average of only 4.2% useful feature accuracy 

lost, showing effectiveness for our proposed task. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

The human brain is a complex system. Research towards

hought patterns and expanding the way people exchange infor-

ation with the outside world has never stopped for cognitive

euroscience and neurorehabilitation. With the rapid development

f cognitive science, neuroscience, computer science, and signal

rocessing technology in recent years, the brain-computer inter-

ace (BCI) provides human beings with other ways to communicate

ith the world, and also allows us to get a better understanding of

he physical mechanisms of human thought [1,2] . 

As an essential part of brain-computer interfaces (BCIs), elec-

roencephalograph (EEG) signals, also known as brainwaves, have

ound a variety of exciting and useful applications for users and

ave become increasingly important in various areas. Gathered

rom the scalp, the EEG is a signal containing information about

he electrical activity of the brain. Electrodes placed on the scalp

re used to detect electrical information from the brain under the

calp, bone and other tissues. Since it is an overall measurement

f human brain electrical activity, it contains a wealth of informa-

ion. This is the reason why EEG can be applied to diverse areas

ike personal recognition [3] , disease identification [4] , sleep stage
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lassification [5] , visual image generation using brainwaves [6] , and

rain typing [7] . 

From the viewpoint of data analysis, automatic EEG analysis is

hallenging due to the inherent feature of bio-signals. One source

f ambiguity is the fused nature of features, which is common for

ost bio-signal feature learning tasks. The fusion here means that

ny one experimental trial of signals contains both wanted features

nd unwanted features for the given tasks. Also, due to the lack

f macroscopic knowledge of the mechanism of EEG activity, this

used feature problem in EEG is more serious than for many other

hysiological signals. Besides that, brain wave analysis is challeng-

ng in the following aspects: 

• Low signal to noise ratio : For EEG signals, being full of infor-

mation also means full of noise and interference, making it very

hard to extract reliable features [8–11] . 

• Data format varies : Depending on the collection device, EEG

signals have a different format [12] . Hence it becomes difficult

to construct standard algorithms to extract features from EEG. 

• Limited training data : Constructing a hand-labeled training

corpus for fine-grained EEG analysis is labor-intensive. Since

EEG data collections are often domain dependent, it is not prac-

tical to always collect new training data for new domains. Fur-

thermore, due to the feature fusion problem, the privacy issue

is also one important reason why current datasets do not in-

volve large numbers of subjects, thereby making it practically

impossible to build a huge dataset like ImageNet [13] . 

https://doi.org/10.1016/j.neucom.2019.11.106
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2019.11.106&domain=pdf
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• Large individual difference : EEG signals have large individual

differences, making it hard to learn robust features across sub-

jects [14–16] . 

In this work, we first designed an end-to-end framework for

short-term EEG signals classification. To address the above dif-

ficulties, deep learning approaches are utilized in this paper to

achieve both learning and visualization. Autoencoder-based tech-

niques are used for feature learning and dimensionality reduction

for short-term EEG signals. In this paper this method is referred

to as Image-wise autoencoders. The Image-wise autoencoders are

designed based on Fast Fourier Transform (FFT) and convolutional

neural networks. Using FFT, we can obtain the three EEG frequency

bands, then we use these frequency bands to achieve an RGB-color

visualization (an image) [10]. Then, a CNN based autoencoder is

designed to extract features from these color images with both

classification loss and reconstruction loss. Under this design, our

models successfully overcomes the difficulties of consistent han-

dling of EEG data. 

Furthermore, in a real-world situation, customers not only re-

quire accuracy for the brain-computer interface but also require a

competent level of privacy and information safety [17] . For exam-

ple, if we would like to use EEG for a personal recognition task for

a bank, the only information we would like to upload is personal

identity-related information. But unfortunately, EEG is a fused fea-

ture data with a messy, vibrant symphony of personal information,

including one’s individuality, learning capacity and emotion infor-

mation. That is, all brain activity related feature will be uploaded

and available for legal or illegal uses. For the bank example, since

there currently does not exist a suitable information filtering algo-

rithm, both the bank and potential future hackers will also be able

to get our other information like disease information, emotion in-

formation and so on. Current research has tried to specify several

standards for operating on EEG data to protect users’ privacy but

that has not solved the problem fundamentally [18–20] . 

To address the above issue, for the first time, we propose a fea-

ture filter for short-term EEG signals. In practice, we do not use the

idea of subtracting features to filter out properties as such prop-

erties are not well-defined. Instead, we choose to generate a new

EEG trial without the unwanted features but maintaining the de-

sired features of the original EEG trial signal. Thus, a generative

adversarial network (GAN) based technique is utilized to create

such an EEG signal. In this paper, we also introduce a feature filter,

which is as an extension of our short-EEG discriminative model.

As mentioned earlier, the feature filter of EEG is more like a style

transformation. So we are inspired by the idea of Image-to-Image

translation [21] introduced in the computer vision area. This ap-

proach is designed to map one image distribution to another im-

age distribution in order to achieve a style transformation. In this

section, such a translation mechanism is used for feature filtering. 

Contributions are summarized as listed: 

• We propose the EEG feature filter and feature extractor to sup-

port it based on our conference papers [22–24] . For the first

time, we consider the situations that competent privacy in-

formation protection is generally required for customers. We

transfer time series EEG signals to EEG images, thereby reduc-

ing the feature filter problem to an image translation problem. 

• We conduct detailed experiments to validate the performance

of the proposed network and contribution of each component.

Experiment on UCI EEG datasets shows our competent level of

information preservation and privacy protection. 

2. Background and related work 

Convolutional neural networks (CNNs) are feature extraction

networks proposed by LeCun [25] , based on the structure of the
ammalian visual cortex, thus providing structural information

bout the data via the network topology. The difference between

onvolution neural networks and the traditional neural networks

s the convolution layer. We consider the convolution layers as fea-

ure extractors. Then, the fully connected layer serves as a classi-

er trying to find decision boundaries between each class. From

nother point of view, the role of the fully connected layer is sim-

lar to the kernel method, warping the high-level feature space to

ake each class approximately linearly separable. 

Much CNN based research has been applied to EEG. Depend-

ng on the type of the kernel, CNN based work can be divided

nto normal CNN as well as frequency-based CNN. Normal CNN

akes the raw EEG as the input while frequency-based CNN ex-

racts frequency features from raw EEG. Examples of normal CNN

pproaches include Deep4net [26] and EEGNet [14] . The SyncNet

27] is an example of a frequency-based CNN for EEG. An inter-

sting commonality is that one-dimensional convolutions are often

pplied among convolution procedures [28,29] . 

An Autoencoder is a kind of compression algorithm, or dimen-

ion reduction algorithm, which has similar properties to Princi-

al Components Analysis (PCA). As compared with PCA, the au-

oencoder has no linear constraints. The autoencoder structure has

een widely used for image compression, for example [30] , which

nspired us to try an autoencoder based learning algorithm. An au-

oencoder can be divided into two parts, an encoder and a decoder.

he number of nodes in the hidden layer is generally less than the

odes in the input layer and the output layer. That is, the origi-

al input is compressed to a smaller feature vector. In Eq. (1) be-

ow, φ and ψ stand for encoder and decoder, respectively, and L

eans squared loss. The objective of the autoencoder is to mini-

ize the difference between the input and the generated output.

 CNN based autoencoder [31] uses convolution operations as the

ncoder and deconvolution operations for the decoder, making it

etter for operating on image data. 

, ψ = argmin φ,ψ 

L (X, (φ ◦ ψ) X ) , (1)

rior to our work, a number of autoencoder related methods have

een applied to EEG signals. Stober [32] used convolutional au-

oencoders with custom constraints to learn features and improve

eneralization across subjects and trials. It achieved commendable

esults but it uses CNN directly on the time domain features from

EG signals but not frequency domain features like our methods.

ut Stober’s work inspired us that it could be a general conclu-

ion that the autoencoder based structure can increase the cross-

ubject accuracy, forming our basic inspiration to try autoencoder

ased structures. 

The most similar work to our classification model is by Tabar

nd Halici [33] . They used EEG motor imagery signals and a com-

ined CNN and fully connected stacked autoencoders (SAE) to find

iscriminative features. They used Short-time Fourier transform

STFT) to build an EEG motor imagery (MI) which is unlike our

D electrode location mapping as used in our work (described in

ection 3 ). Also, their autoencoder design is quite different from

urs since they used a CNN followed by an 8-layer SAE. Neverthe-

ess, they have demonstrated that autoencoders can help to learn

obust features from EEG signals. 

Generative adversarial networks (GANs) are systems of two

eural networks contesting with each other in a minimax game

ramework [34] . The GAN approach has achieved great success

n the image generation area [35–37] . GANs include two main

arts, namely a generator and a discriminator. The generator is

ainly used to learn the distribution of the real image and pro-

uce images in order to fool the discriminator, while the discrim-

nator needs to accept real images while rejecting generated im-

ges. Throughout this process, the generator strives to make the

enerated image more realistic, while the discriminator strives to
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X

G

F

Y

Dx Dy

Zebra Horses

Fig. 1. CycleGAN structure and image translation example [37] . A CycleGAN learns 

a bidirectional mapping mapping from two domians (e.g. zebra images and horses 

images). It is composed of two generators ( G and F ) and two discriminators (Dx and 

Dy). 
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dentify the real image. The key part of GAN is the adversarial loss.

or the image generation task, the adversarial loss is very pow-

rful for images in one domain transformed to the other domain

ince this domain cannot be discriminated by simple rules, but

eep leaning models have achieved some success. 

Image-to-Image translation is a kind of system that can learn

he mapping between an input image distribution and an output

mage distribution using two separate image domains [21] . Shown

n Fig. 1 , given a source distribution X , we are aiming to use a gen-

rative model G to map our source distribution X to the target dis-

ribution Y . An example is shown in Fig. 1 , though it is not perfect,

he translation system has successfully transformed the most im-

ortant features between zebra and horses like the hide color. In

his translation system, we do not explicitly tell the neural network

o change some features. Instead, we have the prior knowledge of

wo separate image distributions. As a result, it is possible for us

o extract the stylistic differences between two image distributions

nd then directly translate them from one domain to the other do-

ain. 

The cycle-consistent adversarial network (CycleGAN) is a well-

nown image-to-image translation method for unpaired images

37] . It overcomes the difficulty of getting paired images, and

orms an autoencoder-like structure to achieve image translation.

n Fig. 1 , G is such a generator that generates a domain Y image

rom domain X , while F is the generator that generates a domain X

mage from the domain Y . Dx and Dy are two discriminators that

re used to determine whether the coming image really belongs to

omain X or domain Y , respectively. The training procedure can be

eparated into two symmetric parts. One is X → G ( X ) → F ( G ( X )). In

his autoencoder-like loop, the training loss comes from two parts,

he first is the discriminator loss which comes from Dy to judge

hether G ( X ) is really from domain Y and the second is the recon-

truction loss to judge whether F ( G ( X )) is the same as X or not. The

ther loop Y → F ( Y ) → G ( F ( Y )) is the same in principle. 

All of these GAN methods are based on two hypotheses. One is

hat it is possible to build a strong classifier that can discriminate

uch features, and the second is the availability of a reliable gen-

rator that can filter out original features and rebuild target fea-

ures. For the first hypothesis, if we cannot train a strong classifier

n normal labeled training, it will be almost impossible for us get

 strong discriminator in training, because adversarial training it-

elf is not well designed to help train the discriminator. That is not

n issue for many GAN based methods which have achieved great

uccess in the CV area, since the most popular current datasets like

NIST [38] and CIFAR-10 [39] have already achieved more than

0% accuracy using different CNNs to serve as accurate discrimina-

ors. In contrast to CV, since the NLP area does not have a univer-

ally recognized text classification method for grammar checking,

urrent GAN methods for NLP, like Seqgan [40] and its improved

ersion Leakgan [41] do not have a strong discriminator to guide

he generator. For our second hypothesis, we have to have a strong

enerator which can rebuild features. But building a strong gen-

rator is closely related to the given type of data. For the image

ranslation area, convolution and deconvolution-based methods are

ften used. 
Image-wise autoencoders as mentioned in the last section are

he solution we use to meet the two hypotheses of building a GAN

or EEG. An image-wise autoencoder is used to extract discrimi-

ative and robust features from EEG images. During the autoen-

oder training, it can reduce reconstruction loss to a very low level

or the test set, making it possible to become a generator for the

AN structure. Furthermore, when we connect the features to a

ully connected layer to work as a classifier, it achieves convinc-

ng results with more than 90% accuracy in the within-subject test

iscriminator. 

. Methodology 

.1. UCI EEG dataset 

The dataset we use is from UCI, the EEG dataset from Neuro-

ynamics Laboratory at the State University of New York. It has

n total 122 participants with 45 control subjects and 77 subjects

iagnosed with alcoholism [27,43] . Each subject has 120 separate

rials. If a subject is labeled with alcoholism, all 120 trials be-

onging to that subject will be labeled as alcoholism. The stimuli

sed are several pictures from the Snodgrass and Vanderwart pic-

ure set. It is a sort time EEG where one trial of EEG signal is of

ne second length. Each trial is sampled at 256Hz using 64 elec-

rodes. For the classification task, models are first evaluated using

ata within subjects, which is randomly split as 7:1:2 for train-

ng, validation and testing for one person [27] . The classification

bjective is to discover whether the subject has been diagnosed

ith alcoholism or not. Also, we note that this is not a balanced

ataset. It is a two-task classification but alcoholism trials account

or more than 70% of the data. For training the feature filter, we

lso use within-subject testing but just split the source distribution

alcoholism) within subjects, which is randomly split as 7:1:2 for

raining, validation and testing for each alcoholism subject. The tar-

et distribution is the whole data from control subjects. The usual

hallenges of handling EEG make it more difficult to apply deep

earning methods compared with computer vision data or natu-

al language processing data. The UCI EEG dataset is not an ex-

eption. First, a label is applied to one trial in this dataset. But as

ne trial contains 64 channels and 256 time series data, making

t a 64 × 256 large matrix. In other words, a single EEG trial has

4 × 256 attributes, difficult for a neural network to find meaning-

ul features if treated as 16,384 independent inputs. Second, EEG is

 kind of time-series data but it lacks recognizable patterns in sin-

le time slices (1/sampling rate) compared with natural language

rocessing, since each word in NLP often has a specific meaning.

hird, as previous work has shown, if we consider raw EEG sig-

als and directly use a convolution neural network for raw EEG

ata, there is always a serious problem to determine the size of

he kernels to use at each stage [28,33] . That is, because the orig-

nal features could be distributed with different time differences

n a single trial depending on the scenario (different classification

ask for example), making it hard for convolution kernels to extract

eatures. 

.2. Image-wise autoencoders 

The image-wise autoencoders take images as input while using

 CNN to extract features. The whole procedure is shown in Fig. 2 ,

nd below is some further explanation. 

( A) EEG to Image: 

The method is derived from Bashivan’s work [42] . As shown in

ig. 3 , it is a method that combines the time-series information

nd spatial channel locations information over the scalp in a trial

f EEG signals. An FFT is performed on the time series to estimate

he power spectrum of the signal for each trial (64 × 256). From
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Fig. 2. Structure of Image-wise autoencoder. We extract three frequency band to constract EEG images [42] . The classification model takes EEG images as input and perform 

a image reconstruction and classification. The joint loss (cross entropy and MSEloss) is used for model training. 

Fig. 3. Left: Polar Projection transform 3D coordinate to 2D coordinate [42] . Right: EEG signal to image example. It maps the multi-channel sequence like data into grid like 

data, which is more convenient to operate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Image-wise autoencoder structure. 

Encoder Decoder 

Input 32 × 32 × 3 Color Image Input 16 × 8 × 8 Matrix 

3 × 3 conv, 2 × 2 max-pooling 3 × 3 deconv, 2 × 2 max-un-pooling 

ReLU, 0.25 dropout ReLU, 0.25 dropout 

3 × 3 conv, 2 × 2 max-pooling 3 × 3 deconv, 2 × 2 max-un-pooling 

ReLU, 0.25 dropout ReLU, 0.25 dropout 

3 × 3 conv,ReLU 3 × 3 deconv 

f  

(  

w  

t  

d  

u  

n

 

fl  

t  

m  

w  

c  

t  

t  

(

3

 

the background, we have seen theta (4–7Hz), alpha (8–13Hz), and

beta (13–30Hz) wave are most representative for EEG signals when

people are awake [44] . Thus, these three frequency bands are ex-

tracted from the original EEG, and the sum of squared absolute val-

ues in these frequency bands are used, forming a 64 × 3 map. To

form an RGB EEG image, the theta frequency will be the red chan-

nel, alpha the green channel and beta the blue channel. For each

frequency band (64 × 1), shown in Fig. 3 , Azimuthal Equidistant

Projection (AEP) also known as Polar Projection is used to map the

three-dimensional 64 channel position into two-dimensional po-

sitions on a flat surface. That is, all EEG electrodes positions are

mapped into a consistent 2D space because the original EEG elec-

trodes are distributed over the scalp in a three-dimensional fash-

ion. In this way, each 64 × 1 frequency band can be mapped to

a 32 × 32 mesh, forming 32 × 32 × 3 data. The CloughTocher

scheme is used for estimating the values in-between the electrodes

over the 32 × 32 mesh. Thus, a trial of 64 × 256 EEG signals is

transformed to 32 × 32 × 3 color pictures. 

The motivation for this is straight-forward. For the EEG2Img

method, theoretically, we can adjust the size of the output EEG

image as needed. For on one trial of EEG signal, we can directly

transfer it to one EEG image with 32 × 32 × 3 format which is a

very typical format in computer vision area and there exist many

mature and successful approaches and models for such form. As a

result, by utilizing such method, it is possible for us to test those

models for EEG images. 

( B) Autoencoder design: 

The design of this CNN based autoencoder is inspired by the

CNN applications for CIFAR-10 dataset [39] . The CIFAR-10 dataset

consists of 60,0 0 0 32 × 32 color images in 10 classes, with 60 0 0

images per class, with the same input dimension as our generated

EEG pictures. Our encoder and decoder are described in Table 1 .

The design of the autoencoder follows Zeiler and Fergus’ ideas

v  
or convolution and deconvolution [45] . The Rectied Linear Unit

ReLU) is used for activation layers to speed up the training process

hile dropout is performed after every activation layer to make

he model more robust, since it forces all the layers before the

ropout to extract redundant representations. Adam optimizer is

sed with 1e-4 learning rate and the batch size is set to 64. Xavier

ormal initialization is used for convolution kernels. 

( C) Classification task: 

The features extracted from image-wise autoencoders will be

attened into a long vector, composed of 16 hidden unit represen-

ations × 64 autoencoders in the channel-wise case or 16 × 8 × 8

atrix in the image-wise case. Then we use a feedforward net-

ork with three hidden layers. During training of these three fully

onnected layers using 4e −5 learning rate, the encoder of both

he channel-wise and image-wise autoencoders will also be fine-

uned by the classification loss using a much smaller learning rate

1e −7). 

.3. Feature filter for EEG 

For the feature filter, we consider the problem of super-

ised domain transformation, where we are given source domain
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Fig. 4. Structure of feature filter. It is trained to map EEG images with unwanted features (i.e. alcoholism information) directly to EEG signals without those features (i.e. 

control images). Modified from CycleGAN strucuture, it has an additional classfier C which provide sementic and task loss to keep uesful feature maintained in the process 

of feature filtering. 
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C  
istribution X with both wanted and unwanted features, labels Z

or wanted features, target domain distribution Y with wanted fea-

ures only. The given source domain distribution X is not paired

ith target domain distribution Y . 

Shown in Fig. 4 , for the UCI EEG dataset, the task of a feature

lter map EEG images with the alcoholism condition to an EEG im-

ge with the control condition. The objective of the feature filter is

o directly learn a mapping from domain X to domain Y . So given

n EEG image from X domain, the mapping representation in do-

ain Y is our filter result. For this CycleGAN based Structure, the

pecific loss formulations are shown as follows. 

.3.1. Loss formulation 

The objective of the feature filter is composed of three parts:

dversarial loss, autoencoder loss and sentiment and classification

oss. They can be expressed as: 

( A) Adversarial loss: 

The adversarial loss is the key part for the mapping from one

istribution to another. For achieving this, the adversarial discrim-

nator is used to judge whether the image is real or fake. For the

oop X → G ( X ) → F ( G ( X )), 

The ability of judging whether an image belongs to a cer-

ain distribution is given by the adversarial loss. For loop

 → G ( X ) → F ( G ( X )), it is defined as: 

 GAN (G, D Y , X, Y ) = E x ∼pdata (x ) [ log[(1 − D Y (G (x ))]] 

+ E y ∼pdata (y ) [ logD Y (y )] 

This is generally the standard format of GAN loss and used to

ake sure the generated samples are convincing. The adversarial

oss for the loop Y → F ( Y ) → G ( F ( Y )) is in a similar format. 

However, in practice, the training of a GAN is quite unstable.

hough the adversarial loss will force the generated image to look
imilar to real images, there is no guarantee for the direction of

hanges. To further make sure the feature filter meets our require-

ents, an autoencoder loss and sentiment loss are introduced as

egularization terms. 

( B) Autoencoder loss: 

The autoencoder loss is also called reconstruction loss or cycle-

onsistency. It is basically an L1 loss which is used to keep

 ≈ F ( G ( X )), that is the generator will be forced to maintain fea-

ures from the original image to have enough information to re-

onstruct the image during the backward loop. As a result, for loop

 → G ( X ) → F ( G ( X )), it refers to: 

 AL (G, F ) = E x ∼pdata (x ) [ || F (G (x )) − x || 1 ] 

oop Y → F ( Y ) → G ( F ( Y )) has a similar autoencoder loss to ensure

(F(Y)) is similar to Y . 

( C) Sentiment and task loss: 

The sentiment and task loss originates from Hoffman’s CYCADA

odel on domain adaptation [46] . Hoffman’s solution is to train a

ycleGAN model with sentiment and task loss to generate fake tar-

et data fake Y from source data X S , thereby forming ( fake Y , Z S ) data

abel pairs to advance the current state of the art domain adapta-

ion model. 

Though the objective for domain adaptation is not related to

ur feature filter task, their proposed sentiment and task loss

s useful for building a feature filter. In their proposed CYCADA

odel, the goal for using sentiment and task loss is to maintain

abeled information when generating ( fake XT , Z S ) data label pairs.

uch an idea satisfies the property that the wanted features are

aintained in our feature filter design. 

The sentiment and task loss is given by an additional classifier

 which gives labeled information. For the definition of task loss,
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Table 2 

The Conv-Deconv generator structure. 

Encoder Decoder 

Input 32 × 32 × 3 Color Image Input 128 × 8 × 8 Matrix 

4 × 4 conv, Leaky ReLU, 4 × 4 Deconv, Leaky ReLU, 

4 × 4 conv, Leaky ReLU, 4 × 4 Deconv, Leaky ReLU, 

3 × 3 conv, Leaky ReLU, Tanh 

3 × 3 conv, Leaky ReLU, 

9 Residual Blocks

Encoder Decoder

X Y

Fig. 5. Resnet-9 generator structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Visulizations of feature filter output. Feature filter filter out features by in- 

fluencing the EEG images style. These style changes cannot be interpreted but it is 

reflected by the change of the result of the classifier. 
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it is basically a simple cross-entropy loss: 

L task (C, X, Z) = −E (x,z) ∼(X,Z) 

K ∑ 

k =1 

1 [ k = z] log(σ (C (k ) (x ))) 

where σ means the softmax function. In practice, the classifier will

be trained on source domain X and wanted label Z. As a result,

loss L task ( C, X, Z ) will be used to show that the target feature label

is retained. 

So the classifier C works as a constraint by giving a seman-

tic consistent loss. The semantic consistent loss will not take any

explicit labeled information but focuses on the label consistency.

That is, the two generators will not change the labeled informa-

tion when performing image translation. If we define p(C, X ) =
argmax (C(X )) , the semantic consistency loss is as follows: 

L sem 

(G, F , X, Y, C) = L task (C, F (Y ) , p(C, Y )) 

+ L task (C, G (X ) , p(C, X )) 

As a conclusion, using the full loss functions mentioned above,

we add those loss functions, and we have the final objective: 

L total = L task (C, X, Z) 

+ L GAN (G, D Y , X, Y ) + L GAN (G, D X , Y, X ) 

+ L AL (G, F ) + L AL (F , G ) 

+ L sem 

(G, F , X, Y, C) 

3.3.2. Network architecture 

We first use a modified version of Image-wise Autoencoder as

our generator (shown in Table 2 ), and our discriminator is the

combination of Image-wise Autoencoder and one fully connected

layer. 

For improving performance, we tried the ResNet-9 generator

and patchGAN combination for training. The combination of ResNet

generator and patchGAN achieves the best performance in many

image translation applications. Shown in Fig. 5 , the residual-based

generator is based on Johnson’s ResNet model on super-resolution

[47] . Similar to their work, our network is composed of one en-

coding blocks, nine residual blocks, and one decoding blocks. The
ncoding or decoding block use the convolution/deconvolution-

nstanceNormReLU structure, and each residual block follows

he residual connection structure which contains convolution-

nstanceNorm-ReLU-convolution-InstanceNorm. The advantage of

sing ResNet-9 is because it is capable of handling deep neural

etworks [48] , thereby making it easier for the generator to learn

he mapping from the source distribution to the target distribution

49] . 

The patchGAN discriminator is derived from pix2pix [21] , which

s a paired image translation framework. The ordinary discrimina-

or determines whether an image is real or fake from the entire

mage while the PatchGAN discriminator uses local patches. For

oop X → G ( X ) → F ( G ( X )), The discriminator D y takes in two im-

ges, the real image Y and the generated image G(X), passes them

hrough 5 downsampling convolutional-BatchNorm-LeakyReLU lay-

rs, and outputs a matrix for further classification. That is, each el-

ment in the matrix corresponds to the classification of one patch.

he advantage of using patchGAN is to avoid conflict with the au-

oencoder loss. Since we are using the final matrix to classify the

mage as real or fake, the patchGAN structure is used primarily to

odel high-frequency structure, whereas the autoencoder loss al-

eady provides low-frequency information [21] . 

. Results and discussion 

.1. Evaluation method 

The evaluation method for GAN is a difficult problem which

eeds to take many factors into account [50] . For a long time af-

er the original GAN paper was published, the generated results

rom GANs still needed to be judged by manual selection in the

V area. After the critical work from Google brain, the FrÃ©chet In-

eption Distance (FID) and F1 scores [50] were introduced to judge

he generation quality of a GAN. Both the FID and F1 score require

 strong pretrained classifier in CV, making it impossible to directly

se in the bio-signal area. 
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90.7%

0.64%

53.7%

49.5%

Original
Alcoholism 
Accuracy

Filtered
Alcoholism 
Accuracy

G

Original
Stimulus
Accuracy

Filtered
Stimulus
Accuracy 

G

(a) Performance with Classification Results. (b) Performance with the Number of Infer-
ences.

Fig. 7. (a) Feature filter performance shown on additional classifiers. There is a significant decrease on unwanted feature (alcoholism) accuracy and mild drop on wanted 

feature (stimulus) accuracy. (b) Performance using multiple inference. Multiple inference has mild influence on stimulus accuracy but decrease alcoholism accuracy by a 

large margin. 

Original
Alcoholism
Distribution

Generated
Control

Distribution

Original
Control

Distribution

Original
Stimulus

Distribution

Generated
Control

Distribution

Alcoholism Label
Maping:  90.7% -> 0.64%

Stimulus Label 1
Maping:  80.9% -> 77.3%

Original
Stimulus

Distribution

Generated
Control

Distribution

Stimulus Label 3
Maping:  30.1% -> 30.0%

Fig. 8. Performance with t-SNE visualization. There exists a clear gap between alcoholism images and control images. The generated distribution is similar to original control 

distribution. Two figures on the right further show the clear mapping result for each stimulus label. 
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Table 3 

Comparison Models and Loss Functions. 

Method Alcoholism Acc 

% (low is aim) 

Stimulus Acc % 

(high is aim) 

G:Conv-Deconv D:Conv ( L GAN + L AL ) 18.2 47.7 

G:Resnet D:PatchGAN ( L GAN + L AL ) 0.643 48.9 

G:Resnet D:PatchGAN ( L total ) 0.642 49.5 
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Thus, we learn from the idea of using FID and Inception Score

IS) but simply use the idea of training an additional classifier to

udge the classification accuracy changes. The classifier we take is

till the Image-wise autoencoder with fully connected layer (FC)

hich is trained separately from adversarial training. In this work,

e are trying to filter out alcoholism information while keeping

timulus information. So, the desired best result should be that we

et a large alcoholism accuracy reduction while keeping reasonable

timulus accuracy (low stimulus accuracy reduction) through the

AN based autoencoder. 

.2. Experiment results 

Fig. 6 shows a visual example of the result of the feature filter.

he left two columns map disease EEG images to control EEG im-

ges, the right two columns map control EEG images to the disease

EG images. From each direction, it can be seen that our feature

lter has made a slight style transformation to images. However,

hose style changes are not interpretable since features from the

riginal EEG images are not interpretable. But from Fig. 7 left part,

nitially, 90.7% of the original images are correctly classified as al-

oholism. After our feature filter, only 0.6% of the images are clas-

ified as alcoholism. That is nearly all images have their alcoholism

nformation filtered out. At the same time, stimulus accuracy has

nly been reduced by 4.2%, and the remaining accuracy is still well

bove chance since it is a 5-class classification problem. 

Furthermore, one testing technique is to go through the feature

lter multiple times. This idea is inspired by Ge’s work for gram-

ar error correction [51] : in their work, they observed that some
entence with multiple grammatical errors cannot be corrected by

he Seq2Seq [52] inference using a single round of inference. So

hey involve multiple rounds of inference in both training and test-

ng. In our work, we have not involved multiple inferences in train-

ng but merely used our trained feature filter to make multiple in-

erences on validation and test data. The result shown in Fig. 7 in-

icates that result is stable after six round of inference. The accu-

acy increases in the first 3 rounds, we think that is because our

eature filter removes unstable factors rather than filtering out the

nwanted information in the first three rounds. 

The performance difference between models and loss functions

re shown in Table 3 . The results show that the best performance

fter multiple times of inference on the test set. We can see that

esnet and patchGAN combination contribute most to the perfor-

ance boost. The sentiment loss and task loss contributes to keep-

ng stimulus information but does not achieve significant improve-

ent on the drop of alcoholism accuracy. One hypothesis we have

s that the stimulus classifier is currently far from a strong clas-

ifier. Our initial stimulus classifier at 53.7% is reasonable where

hance is 20%, but cannot really be called a strong classifier. Thus,
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Algorithm 1 Feature Filter Training Pseudocode. 

1: for number of training iterations do 

2: Draw a minibatch of samples x (1) ,…, x (m ) from domain X 

and their labels Z 

3: Draw a minibatch of samples y (1) ,…, y (n ) from domain Y 

4: Compute the discriminator loss on real images: 

L D real = 

1 

m 

m ∑ 

i =1 

l ogD x (x (i ) ) + 

1 

n 

n ∑ 

i =1 

l ogD y (y (i ) ) 

5: Compute the discriminator loss on fake images: 

L D fake = 

1 

m 

m ∑ 

i =1 

log(1 − D y (G (x (i ) ))) + 

1 

n 

n ∑ 

i =1 

log(1 − D x (F (y (i ) ))) 

6: Update the discriminators D x and D y by 1 
2 (L D 

real 
+ L D 

fake 
) 

7: Compute the classification loss for classifier C: 

L C task = − 1 

m 

m ∑ 

i =1 

K ∑ 

k =1 

1 [ k = z] log(σ (C (k ) (x (i ) ))) 

8: Update the classifier C by L C 
task 

9: Compute the X → Y loss for generator G: 

L G = 

1 

m 

m ∑ 

i =1 

(log(1 −D y (G (x (i ) ))) + L AL (G, F ) + L sem 

(G, F , X, Y, C)) 

10: Compute the Y → X loss for generator F: 

L F = 

1 

n 

n ∑ 

i =1 

(log(1 −D x (F (y (i ) ))) + L AL (F , G ) + L sem 

(G, F , X, Y, C)) 

11: Update the generators G and F by L G and L F respectively 

12: end for 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

we think that could be one factor why adding sentiment and task

loss has not achieved a larger improvement. 

4.3. Working mechanism investigation 

Since style changes from EEG images are not interpretable we

turn our attention to visualize distance between distributions. In-

spired by the FID score, we can first get our original EEG images

and generated EEG images embedded into a feature space given by

some convolution layers since these feature space can be a com-

petent representation of the original distribution. So we choose to

put our original EEG images and generated EEG images into the

pre-trained Image-wise Autoencoder again (without the final fully

connected layer) to get feature representation and then get t-SNE

visualization applied. Fig. 8 shows our t-SNE visualization results.

The most left part shows the mapping from the original alcoholism

distribution to generated control distribution through our feature

filter. We can see that the generated control image distribution

is close to the original control distribution. Also, they have clear

distances from the original alcoholism image distribution which

matches our significant accuracy drop on alcoholism. The middle

part and right part of Fig. 8 shows the mapping from original stim-

ulus distribution to generated stimulus distribution for stimulus la-

bel 1 and stimulus label 3 respectively. From the middle part, orig-

inally 80.9% of data is classified correctly for stimulus data with

label 1 and we still get 77.3% of data classified correctly after the

feature filter is applied. From the right part, we can see that is

30.1% to 30.0% accuracy changes for label 3. So we can see that no

matter the original classification result, the feature filter has no se-

rious influence on the accuracy drop and t-SNE visualizations fur-

ther shows that the two distributions are nearly the same though

feature filters. 

4.4. Limitation and future work 

The first limitation is that our method is based on EEG2Img and

image translation techniques, which means that it is only suitable

for short-term EEG signals. The design of a feature filter for long-

term EEG signals remains to be solved. The second limitation is

future work for the generator; the U-net structure is also applica-

ble for the generator since it is also the current state of the art

method for several image translation tasks. The third limitation is

in our model: we simply stack error functions but do not really op-

timize the training procedure. To further reduce the loss of wanted

features, we can begin with the modification of the training proce-

dure for our GANs. 

5. Conclusion 

Removing or filtering features out of EEG signals is difficult.

However, building a feature filter will have a significant improve-

ment on people’s privacy protection. This approach can lead to

many useful applications, such as privacy protection. An example

could be where a hospital stores only the medical condition related

EEG signal, but the bank stores only personal identification part of

an EEG (assuming a future ATM collects EEG for greater security).

This paper proposes an information-preserving feature filter, which

converts the feature filtering task to an image translation task. The

experiment results using accuracy drops show that our proposed

feature filter can filter out nearly 90% of unwanted features and

keep most of the desired features. 

Appendix A 

Training procedure. 
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